/* Pure's dict and hdict data types based on AVL trees. */ /* Copyright (c) 2008 by Albert Graef <Dr.Graef@t-online.de>. Copyright (c) 2008 by Jiri Spitz <jiri.spitz@bluetone.cz>. This file is part of the Pure programming language and system. Pure is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Pure is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The used algorithm of AVL trees has its origin in the SWI-Prolog implementation of association lists. The original file was created by R. A. O'Keefe and updated for the SWI-Prolog by Jan Wielemaker. For the original file see http://www.swi-prolog.org. The port from SWI-Prolog and the deletion stuff (rmfirst, rmlast, delete) missing in the original file was provided by Jiri Spitz - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Tree constructors. */ private nullary nil; private bin; /***** Tree for dict and hdict is either: - nil (empty tree) or - bin Key value Balance Left Right (Left, Right: trees) Balance: ( 1), ( 0), or (-1) denoting |L|-|R| = 1, 0, or -1, respectively *****/ /* Public operations: ****************************************************** emptydict, emptyhdict: return the empty dict or bag dict xs, hdict xs; create a dict or hdict from list xs dictp d, hdictp d; check whether x is a dict or hdict mkdict y xs, mkhdict y xs: create dict or hdict from a list of keys and a constant value #d size of dict or hdict d d!x: get value from d by key x null d tests whether d is the empty dict or hdict member d x tests whether d contains member with key x members d, list d list members of d (in ascending order fo dict) keys d: lists keys of d (in ascending order fo dict) values d: list values of d first d, last d return first and last member of dict rmfirst d, rmlast d remove first and last member from dict insert d xy insert x into d (replace existing element) update d x y fully curried version of insert delete d x remove x from d *************************************************************************/ private adjustd avl_geq; // Dict and hdict type checks dictp (Dict _) = 1; dictp _ = 0; hdictp (Hdict _) = 1; hdictp _ = 0; // create an empty dict or hdict emptydict = Dict nil; emptyhdict = Hdict nil; // create dict or hdict from a list dict xys = foldl insert emptydict xys if listp xys; hdict xys = foldl insert emptyhdict xys if listp xys; // insert a new member into the dict or hdict insert (t@Dict d) (x => y) | insert (t@Hdict d) (x => y) = if t === Dict then t ((insertd d x y)!0) else t ((inserth d (hash x) x y)!0) with insertd nil key val = [(bin key val ( 0) nil nil), 1]; insertd (bin k _ b l r) key val = [(bin key val b l r), 0] if key == k; insertd (bin k v b l r) key val = adjust leftHasChanged (bin k v b newl r) (-1) when [newl, leftHasChanged] = insertd l key val end if key < k; insertd (bin k v b l r) key val = adjust rightHasChanged (bin k v b l newr) ( 1) when [newr, rightHasChanged] = insertd r key val end if key > k; inserth nil k::int x y = [(bin k [x => y] ( 0) nil nil), 1]; inserth (bin k::int v b l r) key::int x y = [(bin k (inserth2 v x y) b l r), 0] if k == key; inserth (bin k::int v b l r) key::int x y = adjust leftHasChanged (bin k v b newl r) (-1) when [newl, leftHasChanged] = inserth l key x y end if key < k; inserth (bin k::int v b l r) key::int x y = adjust rightHasChanged (bin k v b l newr) ( 1) when [newr, rightHasChanged] = inserth r key x y end if key > k; inserth2 [] x y = [x => y]; inserth2 ((x1 => y):xys) x2 y1 = ((x1 => y1):xys) if x1 === x2; inserth2 ((x => y):xys) x1 y1 = ((x => y ):(inserth2 xys x1 y1)); adjust 0 oldTree _ = [oldTree, 0]; adjust 1 (bin key val b0 l r) LoR = [rebal toBeRebalanced (bin key val b0 l r) b1, whatHasChanged] when [b1, whatHasChanged, toBeRebalanced] = table b0 LoR end; rebal 0 (bin k v _ l r) b = bin k v b l r; rebal 1 oldTree _ = (avl_geq oldTree)!0; /* // Balance rules for insertions // balance where balance whole tree to be // before inserted after increased rebalanced table ( 0) (-1) = [( 1), 1, 0]; table ( 0) ( 1) = [(-1), 1, 0]; table ( 1) (-1) = [( 0), 0, 1]; table ( 1) ( 1) = [( 0), 0, 0]; table (-1) (-1) = [( 0), 0, 0]; table (-1) ( 1) = [( 0), 0, 1] */ // table w/o pattern matching table bb::int wi::int = [ba, wti, tbr] when ba = if bb == 0 then -wi else 0; wti = bb == 0; tbr = (bb + wi) == 0; end end; // delete a member by key from the dict or hdict delete (t@Dict d) x | delete (t@Hdict d) x = if t === Dict then t ((deleted d x)!0) else t ((deleteh d (hash x) x)!0) with deleted nil _ = [nil, 0]; deleted (bin k _ _ nil r ) key = [r, 1] if key == k; deleted (bin k _ _ l nil) key = [l, 1] if key == k; deleted (bin k _ b (bin kl vl bl rl ll) r ) key = adjustd leftHasChanged (bin lastk lastv b newl r) (-1) when [lastk, lastv] = last (bin kl vl bl rl ll); [newl, leftHasChanged] = rmlast (bin kl vl bl rl ll) end if key == k; deleted (bin k v b l r) key = adjustd leftHasChanged (bin k v b newl r) (-1) when [newl, leftHasChanged] = deleted l key end if key < k; deleted (bin k v b l r) key = adjustd rightHasChanged (bin k v b l newr) ( 1) when [newr, rightHasChanged] = deleted r key end if key > k; deleteh nil _ _ = [nil, 0]; deleteh (bin k::int xys b nil r ) key::int x = (if (newxys == []) then [r, 1] else [bin k newxys b nil r, 0]) when newxys = deleteh2 xys x end if k == key; deleteh (bin k::int xys b l nil) key::int x = (if (newxys == []) then [l, 1] else [bin k newxys b l nil, 0]) when newxys = deleteh2 xys x end if k == key; deleteh (bin k::int xys b (bin kl vl bl rl ll) r) key::int x = adjustd leftHasChanged (bin lastk lastv b newl r) (-1) when [lastk, lastv] = last (bin kl vl bl rl ll); [newl, leftHasChanged] = rmlast (bin kl vl bl rl ll) end if (k == key) && ((deleteh2 xys x) == []); deleteh (bin k::int xys b l r) key::int x = [bin key (deleteh2 xys x) b l r, 0] if k == key; deleteh (bin k::int v b l r) key::int x = adjustd leftHasChanged (bin k v b newl r) (-1) when [newl, leftHasChanged] = deleteh l key x end if key < k; deleteh (bin k::int v b l r) key::int x = adjustd rightHasChanged (bin k v b l newr) ( 1) when [newr, rightHasChanged] = deleteh r key x end if key > k; deleteh2 [] _ = []; deleteh2 ((x1 => _) : xys) x2 = xys if x1 === x2; deleteh2 ((x => y) : xys) x1 = (x => y) : (deleteh2 xys x1); rmlast nil = [nil, 0]; rmlast (bin _ _ _ l nil) = [l, 1]; rmlast (bin k v b::int l r ) = adjustd rightHasChanged (bin k v b l newr) ( 1) when [newr, rightHasChanged] = rmlast r end; last (bin x y _ _ nil) = [x, y]; last (bin _ _ _ _ d2 ) = last d2 end; // create dict or hdict from a list of keys and a constant value mkdict y xs = dict (zipwith (=>) xs (repeatn (#xs) y)) if listp xs; mkhdict y xs = hdict (zipwith (=>) xs (repeatn (#xs) y)) if listp xs; // check for the empty dict or hdict null (Dict nil) = 1; null (Dict _) = 0; null (Hdict nil) = 1; null (Hdict _) = 0; // get a number of members in dict or hdict #(Dict d) = #d with #nil = 0; #(bin _ _ _ d1 d2) = #d1 + #d2 + 1 end; #(Hdict d) = size d with size nil = 0; size (bin _ xys _ d1 d2) = size d1 + size d2 + #xys end; // check whether a key in dict or hdict member (Dict d) k = member d k with member nil _ = 0; member (bin x _ _ d1 d2) y = member d1 y if x > y; = member d2 y if x < y; = 1 if x == y end; member (Hdict d) k = member d (hash k) k with member nil _ _ = 0; member (bin k::int xys _ d1 d2) k1::int x1 = member d1 k1 x1 if k > k1; = member d2 k1 x1 if k < k1; = memberk xys x1; memberk [] _ = 0; memberk ((x1 => y):_ ) x2 = 1 if x1 === x2; memberk ( _:xys) x2 = memberk xys x2 end;; // get all members of dict or hdict members (Dict d) = members d with members nil = []; members (bin x y _ d1 d2) = members d1 + ((x => y) : (members d2)) end; members (Hdict d) = members d with members nil = []; members (bin _ xys _ d1 d2) = members d1 + xys + members d2 end; list d@(Dict _) | list d@(Hdict _) = members d; // get the first member of a dict first (Dict d) = first d with first (bin x y _ nil _) = (x => y); first (bin _ _ _ d1 _) = first d1 end; // get the last member of a dict last (Dict d) = last d with last (bin x y _ _ nil) = (x => y); last (bin _ _ _ _ d2 ) = last d2 end; // remove the first member from a dict rmfirst (Dict d) = Dict ((rmfirst d)!0) with rmfirst nil = [nil, 0]; rmfirst (bin _ _ _ nil r) = [r, 1]; rmfirst (bin k v b l r) = adjustd leftHasChanged (bin k v b newl r) (-1) when [newl, leftHasChanged] = rmfirst l end end; // remove the last member from a dict rmlast (Dict d) = Dict ((rmlast d)!0) with rmlast nil = [nil 0]; rmlast (bin _ _ _ l nil) = [l, 1]; rmlast (bin k v b l r) = adjustd rightHasChanged (bin k v b l newr) ( 1) when [newr, rightHasChanged] = rmlast r end end; // get a list of all keys from dict or hdict keys (Dict d) = keys d with keys nil = []; keys (bin x _ _ d1 d2) = keys d1 + (x : (keys d2)) end; keys (Hdict d) = keys d with keys nil = []; keys (bin _ xys _ d1 d2) = keys d1 + map (\(key => _) -> key) xys + keys d2 end; // get a list of all values from dict or hdict vals (Dict d) = vals d with vals nil = []; vals (bin _ y _ d1 d2) = vals d1 + (y : (vals d2)) end; vals (Hdict d) = vals d with vals nil = []; vals (bin _ xys _ d1 d2) = vals d1 + map (\(_ => val) -> val) xys + vals d2 end; // get a value by key from dict or hdict (Dict d)!k = d!k with nil!_ = throw out_of_bounds; (bin x y _ d1 d2)!x1 = d1!x1 if x1 < x; = d2!x1 if x1 > x; = y end; (Hdict d)!k = lookup d (hash k) k with lookup nil _ _ = throw out_of_bounds; lookup (bin k::int xys _ d1 d2) k1::int x1 = lookup d1 k1 x1 if k > k1; = lookup d2 k1 x1 if k < k1; = lookupk xys x1; lookupk [] _ = throw out_of_bounds; lookupk ((xa => y):_ ) xb = y if xa === xb; lookupk ( _ :xys) x = lookupk xys x end; // curried version of insert for dict and hdict update d@(Dict _) x y | update d@(Hdict _) x y = insert d (x => y); // equality checks for dict and hdict d1@(Dict _) == d2@(Dict _) = (members d1) == (members d2); d1@(Hdict _) == d2@(Hdict _) = if (all (member d1) (keys d2)) then if (all (member d2) (keys d1)) then (vals d1) == (map ((!)d2) (keys d1)) else 0 else 0; // inequality checks for dict and hdict d1@(Dict _) != d2@(Dict _) = (members d1) != (members d2); d1@(Hdict _) != d2@(Hdict _) = not (d1 == d2); /* Private functions. */ adjustd ToF::int tree LoR::int = adjust ToF tree LoR with adjust 0 oldTree _ = [oldTree, 0]; adjust 1 (bin key val b0 l r) LoR = rebal toBeRebalanced (bin key val b0 l r) b1 whatHasChanged when [b1, whatHasChanged, toBeRebalanced] = table b0 LoR end; rebal 0 (bin k v _ l r) b whatHasChanged = [bin k v b l r, whatHasChanged]; rebal 1 oldTree _ _ = avl_geq oldTree; /* // Balance rules for deletions // balance where balance whole tree to be // before deleted after decreased rebalanced table ( 0) ( 1) = [( 1), 0, 0]; table ( 0) (-1) = [(-1), 0, 0]; table ( 1) ( 1) = [( 0), 1, 1]; // ^^^^ // It depends on the tree pattern in avl_geq whether it really decreases table ( 1) (-1) = [( 0), 1, 0]; table (-1) ( 1) = [( 0), 1, 0]; table (-1) (-1) = [( 0), 1, 1]; // ^^^^ // It depends on the tree pattern in avl_geq whether it really decreases */ // table w/o pattern matching table bb wd = [ba, wtd, tbr] when ba = if bb == 0 then wd else 0; wtd = abs bb; tbr = bb == wd; end end; // Single and double tree rotations - these are common for insert and delete /* The patterns (-1)-(-1), (-1)-( 1), ( 1)-( 1) and ( 1)-(-1) on the LHS always change the tree height and these are the only patterns which can happen after an insertion. That's the reason why we can use tablei only to decide the needed changes. The patterns (-1)-( 0) and ( 1)-( 0) do not change the tree height. After a deletion any pattern can occur and so we return 1 or 0 as a flag of a height change. */ avl_geq d = avl_geq d with avl_geq (bin a va (-1) alpha (bin b vb (-1) beta gamma)) = [bin b vb ( 0) (bin a va ( 0) alpha beta) gamma, 1]; avl_geq (bin a va (-1) alpha (bin b vb ( 0) beta gamma)) = [bin b vb ( 1) (bin a va (-1) alpha beta) gamma, 0]; // the tree doesn't decrease with this pattern avl_geq (bin a va (-1) alpha (bin b vb ( 1) (bin x vx b1 beta gamma) delta)) = [bin x vx ( 0) (bin a va b2 alpha beta) (bin b vb b3 gamma delta), 1] when [b2, b3] = table b1 end; avl_geq (bin b vb ( 1) (bin a va ( 1) alpha beta) gamma) = [bin a va ( 0) alpha (bin b vb ( 0) beta gamma), 1]; avl_geq (bin b vb ( 1) (bin a va ( 0) alpha beta) gamma) = [bin a va (-1) alpha (bin b vb ( 1) beta gamma), 0]; // the tree doesn't decrease with this pattern avl_geq (bin b vb ( 1) (bin a va (-1) alpha (bin x vx b1 beta gamma)) delta) = [bin x vx ( 0) (bin a va b2 alpha beta) (bin b vb b3 gamma delta), 1] when [b2, b3] = table b1 end; /* table ( 1) = [( 0), (-1)]; table (-1) = [( 1), ( 0)]; table ( 0) = [( 0), ( 0)] */ // table w/o pattern matching table bal = [b1, b2] when b1 = bal == (-1); b2 = -(bal == 1); end end;